2004
DOI: 10.14209/jcis.2004.2
|View full text |Cite
|
Sign up to set email alerts
|

A Short Survey on Arithmetic Transforms and the Arithmetic Hartley Transform

Abstract: Arithmetic complexity has a main role in the performance of algorithms for spectrum evaluation. Arithmetic transform theory offers a method for computing trigonometrical transforms with minimal number of multiplications. In this paper, the proposed algorithms for the arithmetic Fourier transform are surveyed. A new arithmetic transform for computing the discrete Hartley transform is introduced: the Arithmetic Hartley transform. The interpolation process is shown to be the key element of the arithmetic transfor… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
1
0
4

Year Published

2004
2004
2009
2009

Publication Types

Select...
4

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(5 citation statements)
references
References 40 publications
0
1
0
4
Order By: Relevance
“…The arithmetic complexity (flops) of this FFT is currently under investigation. Albeit there exists scores of different and smart techniques for spectrum analysis, including the arithmetic approach [28,29] or wavelet transforms [30], which are among the best choices, the FFTs still is an extremely widespread technique. The FFT presented here is also easy to implement using DSP or low-cost high-speed Integrated Circuits.…”
Section: Discussionmentioning
confidence: 99%
“…The arithmetic complexity (flops) of this FFT is currently under investigation. Albeit there exists scores of different and smart techniques for spectrum analysis, including the arithmetic approach [28,29] or wavelet transforms [30], which are among the best choices, the FFTs still is an extremely widespread technique. The FFT presented here is also easy to implement using DSP or low-cost high-speed Integrated Circuits.…”
Section: Discussionmentioning
confidence: 99%
“…Posteriormente, o procedimento proposto por Bruns recebeu o nome de transformada aritmética de Fourier (AFT), técnica que foi redescoberta e revisitada em diversos outros trabalhos. Dentre as diferentes versões da AFT [8], a mais eficiente em termos de complexidade computacional é a proposta em [4]. Esse algoritmo, chamado AFT simplificada, é resumido na definição e no teorema que seguem.…”
Section: A Transformada Aritmética De Fourierunclassified
“…Em [8], técnicas para interpolação em transformadas aritméticas são propostas. Entre elas, destaca-se a de interpolação ideal, que permite obter o valor exato do sinal no respectivo instante de tempo discreto não-inteiro.…”
Section: B Médias Alternantesunclassified
“…Em 1903, H. Bruns [1] desenvolveu um método para o cálculo dos coeficientes da Série de Fourier de um sinal usando a fórmula de inversão de Möbius. Nesta técnica, posteriormente denominada Transformada Aritmética de Fourier (AFT) [2], há multiplicações apenas por {-1, 0, 1} e possíveis fatores de escalonamento. Em 1988, Tufts e Sadasiv [3] "redescobriram" um algoritmo parecido com o original de Bruns e o introduziram na Engenharia.…”
Section: Introductionunclassified