The statue is part of the heritage facial recognition process which is immobile and artistically stylized. Identifying the similarities between the statues can help provide an important reference for tourism in recognizing the faces of the statues which are different and have almost the same characteristics in every country, especially in Indonesia, among the facial recognition of the statues based on the condition, color, and shape of the face. The purpose of this study is to apply the original images that have characteristics, partially done manually to various types of transformations and calculate matching evaluation parameters such as the number of key points in the image, the level of matching, and the required execution time for each algorithm. To confirm the efficiency of the proposed method, experiments were carried out on private data sets obtained from statues under low light conditions and in different poses. The data was taken based on the image of the Buddha's face and matched with the facial image of the Buddha statue available in the database using comparisons resulting from data processing using the Sift and ORB methods with various types of transformations. The result will be seen in the image that is matched with the best algorithm for each type of distortion. The faces tested are images of the faces of the Buddha statues that are recognized, and photos of some of the original statues that were not saved due to unclear lighting and camera distance factors. The results show that the number of key points generated is the number of key points, the ORB method gives fewer results compared to the SIFT method and the average SIFT recognition and processing time shows better performance for an average of 100% at a SIFT matching rate of 2% with time 0.400285 and the ORB method is 1% for the time 0.400961