1990
DOI: 10.1088/0953-8984/2/50/024
|View full text |Cite
|
Sign up to set email alerts
|

A simple and accurate theory of short-range order in alloys

Abstract: The authors propose a very simple method of calculating short-range order parameters alpha ij in disordered alloys using a series expansion in powers of a parameter gamma =exp(-1/ xi ) where xi is the dimensionless correlation length of the pair correlation function. In authors' approximation the sum rule alpha ii=1 is satisfied exactly, unlike in previous theories. In the zeroth order their approach leads to the spherical model results. The high accuracy of the theory developed is illustrated by comparing its… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

2
44
1
3

Year Published

1993
1993
2011
2011

Publication Types

Select...
5
3

Relationship

0
8

Authors

Journals

citations
Cited by 27 publications
(50 citation statements)
references
References 13 publications
2
44
1
3
Order By: Relevance
“…However, from the perspective of DCA where N cell = N c , all values ofΣ are potentially finite. Although the values of Σ ij decrease rapidly with shell distance for the disordered phase 47 (also observed in our work), this is not the case for ordered system. For example, Fig.…”
Section: Afm On Fcc Latticesupporting
confidence: 62%
“…However, from the perspective of DCA where N cell = N c , all values ofΣ are potentially finite. Although the values of Σ ij decrease rapidly with shell distance for the disordered phase 47 (also observed in our work), this is not the case for ordered system. For example, Fig.…”
Section: Afm On Fcc Latticesupporting
confidence: 62%
“…There are number of various statistical-thermodynamic theories and approximations for definition of such interactions in alloys. In particular, we would like to indicate on: conventional SCF approximation based on the Krivoglaz-Clapp-Moss (KCM) formula [39][40][41][42], inverse Monte Carlo (IMC) method [43], spherical model (SM) [39,41,42,44,45], Onsager cavity field (OCF) approach [46][47][48], Tahir-Kheli approximation [49], Vaks-Zein-Kamyshenko cluster-field (CF) approach [50][51][52] and cluster variation methods (CVM) [53][54][55][56], Tokar-Masanskii-Grishchenko approach based on the 'gamma' expansion method [57], alpha-expansion (AE), including high-temperature expansion methods (HTM) [58], so-called 'ring' approximation [59], and some approximations developed in works reported in [60][61][62][63]. All above-mentioned approximations can be divided into two groups: (i) reciprocal-space (k-space) representations [39-42, 44-49, 59-63], which have no limitation on the effective radius of interatomic interactions and (ii) direct-space (r-space) representations [43,[50][51][52][53][54][55][56][57][58] having limitations for the interatomic-interaction extent (with using a limited number of the SRO parameters, ( ) α...…”
Section: Interatomic Interactions In (Para)magnetic Fcc-ni-fe Alloysmentioning
confidence: 99%
“…If we consider explicitly a mutual influence of the magnetic and atomic subsystems in the configuration-dependent part of free energy of a disordered alloy (see Eqs. (19)- (22)), the KCM formula (36) stays valid [131], and it is not necessary to overestimate the statistical correlation influence and many-particle force interactions of substitutional atoms in magnetic alloy, at the same time, unreasonably neglecting the apparent magnetism of an alloy [50][51][52]57].…”
Section: Total Interatomic 'Mixing' Energies For Fcc-ni-fe Alloysmentioning
confidence: 99%
See 1 more Smart Citation
“…При цьому було використано ідею М. О. Кривоглаза [2,8,48,53,[126][127][128] про прийнятність застосування методу термодинамічних флуктуацій для оцінювання параметрів кореляції навіть в рамках сере-дньопольового усереднення [143,314]. З усіх отриманих й відомих на-ближень найвищу чисельну точність результатів дає узагальнена, так звана «сферична» модель [112,125,143,182,201,314]. Однак, навіть в рамках «сферичної» моделі неможливо описати явище температурної залежності положення максимуму фур'є-компонент параметрів близь-кого порядку в оберненому просторі (наприклад, для Cu-Au, Cu-Pd) у випадку незалежності енергії взаємодії атомів в сплаві від температури (тобто у такому сплаві, для якого можна знехтувати внесками у міжато-мну взаємодію ефектів розмірної невідповідності й магнетизму компо-нентів та теплового розширення кристалічної решітки).…”
Section: сплавunclassified