Protein purification is a crucial step for various downstream applications like drug development, antibody preparation, and structure determination. The constant pursuit is for methods that are more efficient and cost-effective. We propose a novel approach using an elastin-like polypeptide (ELP) as an aggregation core that serves as an anchor between the beads in a chromatography column. In this method, a chilled sample containing a [target protein type] fusion protein is loaded onto a pre-equilibrated IMAC (immobilized metal affinity chromatography) column with a low-salt buffer. The column is then washed with a warm buffer containing high salt to remove impurities. Here, the key step involves warming the column above the ELP’s transition temperature (Tt), which triggers its aggregation. This aggregation is expected to trap the target protein tightly between the beads. Subsequently, a harsh wash with high salt and high imidazole can be applied to remove even persistent contaminants, achieving high protein purity. Finally, the temperature is lowered, and a cold, low-salt buffer is introduced to reverse the aggregation and elute the purified target protein. This method has the potential to eliminate the need for sophisticated chromatography systems while still achieving high protein purity.