Abstract. Some conditions under which any subadditive function is periodic are presented. It is shown that the boundedness from below in a neighborhood of a point of a subadditive periodic (s.p.) function implies its nonnegativity, and the boundedness from above in a neighborhood of a point implies it nonnegativity and global boundedness from above. A necessary and sufficient condition for existence of a subadditive periodic extension of a function f0 : [0, 1) → R is given. The continuity, differentiability of a s.p. function is discussed, and an example of a continuous nowhere differentiable s.p. function is presented. The functions which are the sums of linear functions and s.p. functions are characterized. The refinements of some known results on the continuity of subadditive functions are presented.