As an emerging contaminant in the environment, microplastics have attracted worldwide attention. Although research methods on microplastics in the environment have been reported extensively, the data on microplastics obtained cannot be comparable due to different methods. In this work, we critically reviewed the analytical methods of microplastics, including sample collection, separation, identification, and quantification. Manta trawl and tweezers or cassette corers are used to collect water samples and sediments, respectively. For biota sample, internal organs need to be dissected and separated to obtain microplastics. Density differences are often used to separate microplastics from the sample matrix. Visual classification is one of the most common methods for identifying microplastics, and it can be better detected by combining it with other instruments. However, they are not suitable for detection nanoplastics, which may lead to underestimation of risk. The abundance of microplastics varies with the detection method. Thus, the analytical methods for microplastics need to be standardized as soon as possible. Meanwhile, new methods for analyzing nanoplastics are urgently needed. © 2019 Water Environment Federation • Practitioner points • Sampling, separation, identification, and quantification are important procedures. • The sampling and separation methods for microplastics need to be standardized. • The organic matter can be removed by digestion to facilitate identification. • Combine microscope with analytical instruments to better identify microplastics. • There is still a challenge to quantification of smaller-sized plastic particles.