Environmental contextMicroplastics found in soil pose several potential environmental risks. This study shows that microplastics on the soil surface can be ingested by earthworms and transported to the lower soil layers. In this way, microplastics may enter the food chain and find their way into groundwater systems, especially in cases where the water table is shallow.
AbstractIn the current study, we examine how the activities of earthworms (Lumbricus terrestris) affect microplastic (MP) distribution and concentration in soil, with a focus on low density polyethylene (LDPE). We also want to determine if MPs can be flushed out with water. We used a laboratory sandy soil column (polyvinyl chloride tube) experimental set-up and tested five different treatments: (1) treatment with just soil (control) to check if the saturated conductivity (Ksat) could be impacted by MP, (2) treatment with MP, (3) treatment with MP and litter, (4) treatment with earthworms and litter as a second control for treatment 5 and (5) treatment with MPs, earthworms and litter. Each treatment consisted of eight replicates. For the treatments with MP, the concentration of MP added at the start of the experiment was 7% by weight (3.97g, polyethylene, 50% 1mm–250µm, 30% 250µm–150µm and 20% <150µm) based on 52.78g of dry litter from Populus nigra. In the treatments using earthworms, two adult earthworms, with an initial average weight of (7.14±0.26) g, were placed in each column. Results showed that LDPE particles could be introduced into the soil by the earthworms. MP particles were detected in each soil sample and within different soil layers for the earthworm treatments. Earthworms showed a tendency to transport the smaller MP particles and that the amount of MPs in size class <250μm increased in soil samples with increasing soil depth in comparison to the other size classes. After leaching, MPs were only detected in the leachate from the treatments with the earthworms, and the MP had similar size distributions as the soil samples in the 40–50cm layer of the treatment with MP, earthworms and litter. The results of this study clearly show that biogenic activities can mobilise MP transport from the surface into the soil and even be leached into drainage. It is highly likely that biogenic activities constitute a potential pathway for MPs to be transported into soil and groundwater.