Complex and organic-rich solid substrates such as sludge and soil have been shown to be contaminated by microplastics; however, methods for extracting plastic particles have not yet been systemically tested or standardized. This study investigated four main protocols for the removal of organic material during analysis of microplastics from complex solid matrices: oxidation using HO, Fenton's reagent, and alkaline digestion with NaOH and KOH. Eight common polymer types were used to assess the influence of reagent exposure on particle integrity. Organic matter removal efficiencies were established for test sludge and soil samples. Fenton's reagent was identified as the optimum protocol. All other methods showed signs of particle degradation or resulted in an insufficient reduction in organic matter content. A further validation procedure revealed high microplastic extraction efficiencies for particles with different morphologies. This confirmed the suitability of Fenton's reagent for use in conjunction with density separation for extracting microplastics. This approach affords greater comparability with existing studies that utilize a density-based technique. Recommendations for further method optimization were also identified to improve the recovery of microplastic from complex, organic-rich environmental samples.
Microplastic (MP) contamination is ubiquitous in the environment and many species worldwide have been shown to contain MP. The ecological impact of MP pollution is still unknown, thus there is an urgent need for more knowledge. One key task is to identify species suitable as sentinels for monitoring in key eco-compartments, such as coastal waters. In Norway, mussels (Mytilus spp.) have been monitored for hazardous contaminants through OSPAR since 1981. Norway has the longest coastline in Europe and adding MP to the Norwegian Mussel Watch is therefore important in a European and global context. The present study reports MP data in mussels (332 specimens) collected from multiple sites (n = 15) spanning the whole Norwegian coastline. MPs were detected at all locations, except at one site on the west coast. Among the most surprising findings, mussels from the Barents Sea coastline in the Finnmark region, contained significantly more MPs than mussels from most of the southern part of the country, despite the latter sites being located much closer to major urban areas. Only mussels from a site located very close to Oslo, the capital, contained levels similar to those observed in the remote site in Finnmark. In total an average of 1.5 (±2.3) particles ind and 0.97 (±2.61) particles w.w. g was found. The most common MPs were <1 mm in size, and fibres accounted for 83% of particles identified, although there was inter-site variability. Thirteen different polymeric groups were identified; cellulosic being the most common and black rubbery particles being the second. This study suggests Mytilus spp. are suitable for semi-quantitative and qualitatively monitoring of MPs in coastal waters. However, some uncertainties remain including mussel size as a confounding factor that may influence ingestion, the role of depuration and other fate related processes, and this call for further research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.