The technique of small angle neutron scattering (SANS) is ideally suited for determining the length scale of magnetic correlations in nanocrystalline materials. The additional use of polarized neutrons also allows for a clear separation between magnetic and non-magnetic scattering. The temperature dependence of the SANS cross-section from a two-phase alloy, consisting of both amorphous and nano-crystalline parts, Fe 89 Zr 7 B 3 Ctu,, has been measured in the temperature range from 293 to 500 K. The SANS measurements are accompanied by bulk magnetization and Mbssbauer transmission data. In this range of temperatures, the magnetic contrast between the nanocrystalline and amorphous phases, which are both magnetic, changes dramatically. This phase contrast increases up to 380 K, which is the proposed decoupling temperature for the inter-granular exchange stiffness. Above this temperature, the contrast levels off slowly, being totally dominated by the decreasing magnetization of the nanocrystalline phase.