TENCON 2012 IEEE Region 10 Conference 2012
DOI: 10.1109/tencon.2012.6412176
|View full text |Cite
|
Sign up to set email alerts
|

A simple real-time QRS detection algorithm utilizing curve-length concept with combined adaptive threshold for electrocardiogram signal classification

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

0
4
0
1

Year Published

2014
2014
2023
2023

Publication Types

Select...
7
1

Relationship

0
8

Authors

Journals

citations
Cited by 20 publications
(5 citation statements)
references
References 18 publications
0
4
0
1
Order By: Relevance
“…no. Method Sensitivity Predictivity 1 the proposed method 99.91 99.91 2 Pan–Tompkins [ 5 ] 99.75 99.54 3 Hilbert transform [ 11 ] 99.94 99.93 4 curve-length transform [ 23 ] 99.86 99.84 5 S-transform [ 3 ] 99.84 99.89 …”
Section: Resultsmentioning
confidence: 99%
See 2 more Smart Citations
“…no. Method Sensitivity Predictivity 1 the proposed method 99.91 99.91 2 Pan–Tompkins [ 5 ] 99.75 99.54 3 Hilbert transform [ 11 ] 99.94 99.93 4 curve-length transform [ 23 ] 99.86 99.84 5 S-transform [ 3 ] 99.84 99.89 …”
Section: Resultsmentioning
confidence: 99%
“…Meyer et al [ 21 ] presented an approach to automatically combine different QRS complex detection algorithms, here the Pan–Tompkins and wavelet algorithms, to benefit from the strengths of both methods. Lewandowski et al [ 23 ] proposed a simple real-time QRS detection algorithm utilising curve-length concept with combined adaptive threshold for ECG signal classification.…”
Section: Related Workmentioning
confidence: 99%
See 1 more Smart Citation
“…Numerous approaches proposed in the literature for QRS detection have been well reviewed and compared in [1]. Almost all the high performance algorithms involve two major steps: (i) transformation of the QRS complex into an impulse-like event through some linear or non-linear processing, (ii) R-peak detection by comparing the features of the transformed signal against adaptive [2], [3] or fixed thresholds or with the use of some heuristic detection logic [4]. Among these, methods based on the first derivative of the ECG signal are often used in real time applications because of their low computational load and lack of need for training and patient specific information [5].…”
Section: Introductionmentioning
confidence: 99%
“…Para la detección de la onda R se han propuesto diferentes estrategias para resaltar las componentes espectrales que se encuentran en un ancho de banda entre los 10 y 20 Hz [4]. También se han obtenido éxitos a través del uso de redes neuronales y transformada wavelet [5], implementación de primeras derivadas [6], transformada curvelet [7], interpolación basada en curvas splines [8] y descomposición empíri-ca [9]. Los procesos de detección de la onda R proporcionan como resultado el realce de esta componente del complejo cardiaco en el dominio del tiempo.…”
Section: Introductionunclassified