In this chapter, we review the worldwide progress referred to designing optical beamforming networks intended to the next-generation ultra-wideband millimeter-wave phased array antennas for incoming fifth-generation wireless systems, which in recent years is under the close attention of worldwide communication community. Following the tendency, we study in detail the design concepts below true-time-delay photonics beamforming networks based on switchable or continuously tunable control. Guided by them, we highlight our NI AWRDE CADbased simulation experiments in the frequency range of 57-76 GHz on design of two 16-channel photonics beamforming networks using true-time-delay approach. In the first scheme of the known configuration, each channel includes laser, optical modulator, and 5-bit binary switchable chain of optical delay lines. The second scheme has an optimized configuration based on only 3-bit binary switchable chain of optical delay lines in each channel, all of which are driven by four lasers with wavelength division multiplexing and a common optical modulator. In the result, the novel structural and cost-efficient configuration of microwave-photonics beamforming network combining wavelength division multiplexing and true-time-delay techniques is proposed and investigated.