The precise estimation of dynamic power consumption, power droop and temperature development during scan test require a very large number of time-aware gate-level logic simulations. Until now, such characterizations have been feasible only for rather small designs or with reduced precision due to the high computational demands. We propose a new, throughput-optimized timing simulator on running on GPGPUs to accelerate these tasks by more than two orders of magnitude and thus providing for the first time precise and comprehensive toggle data for industrial-sized designs and over long scan test operations. Hazards and pulse-filtering are supported for the first time in a GPGPU accelerated simulator, and the system can easily be extended to even more sophisticated delay and power models.
Preprint
General Copyright NoticeThis article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden. This is the author's "personal copy" of the final, accepted version of the paper published by IEEE. Abstract-The precise estimation of dynamic power consumption, power droop and temperature development during scan test require a very large number of time-aware gate-level logic simulations. Until now, such characterizations have been feasible only for rather small designs or with reduced precision due to the high computational demands.We propose a new, throughput-optimized timing simulator on running on GPGPUs to accelerate these tasks by more than two orders of magnitude and thus providing for the first time precise and comprehensive toggle data for industrial-sized designs and over long scan test operations. Hazards and pulse-filtering are supported for the first time in a GPGPU accelerated simulator, and the system can easily be extended to even more sophisticated delay and power models.