The mitochondrial gene <i>orf108</i> co-transcribed with <i>atp1</i> and causes cytoplasmic male sterility in <i>Brassica</i> crops, is widely distributed across wild species and genera of <i>Brassicaceae</i>. However, intraspecific variations in the presence of <i>orf108</i> have not yet been studied, and the mechanisms for the wide distribution of the gene remain unclear. We analyzed the presence and sequence variations of <i>orf108</i> in two wild species, <i>Brassica maurorum</i> and <i>Moricandia arvensis</i>. After polymerase chain reaction amplification of the 5′ region of <i>atp1</i> and the coding sequence of <i>orf108</i>, we determined the DNA sequences. <i>B. maurorum</i> and <i>M. arvensis</i> showed variations for the presence of <i>orf108</i> or <i>orf117</i> (<i>orf108<sup>V117</sup></i>) both between and within accessions, and were not fixed to the mitochondrial type having the male sterile genes. Sequencing of the amplicons clarified that <i>B. maurorum</i> has <i>orf108<sup>V117</sup></i> instead of <i>orf108</i>. Sequencing also indicated mitochondrial heteroplasmy in the two species; particularly, in <i>B. maurorum</i>, one plant possessed both the <i>orf108</i> and <i>orf108<sup>V117</sup></i> sequences. The results suggested that substoichiometric shifting of the mitochondrial genomes leads to the acquisition or loss of <i>orf108</i>. Furthermore, fertility restorer genes of the two species were involved in the processing of the mRNA of the male sterility genes at different sites.