The accuracy of Single Photon Emission Computed Tomography (SPECT) images is degraded by physical effects, namely photon attenuation, Compton scatter and spatially varying collimator response. The 3D nature of these effects is usually neglected by the methods used to correct for these effects. To deal with the 3D nature of the problem, a 3D projector modeling the spread of photons in 3D can be used in iterative tomographic reconstruction. The 3D projector can be estimated analytically with some approximations, or using precise Monte Carlo simulations. This latter approach has not been applied to fully 3D reconstruction yet due to impractical storage and computation time. The goal of this paper was to determine the gain to be expected from fully 3D Monte Carlo (F3DMC) modeling of the projector in iterative reconstruction, compared to conventional 2D and 3D reconstruction methods. As a proof-of-concept, two small datasets were considered. The projections of the two phantoms were simulated using the Monte Carlo simulation code GATE, as well as the corresponding projector, by taking into account all physical effects (attenuation, scatter, camera point spread function) affecting the imaging process. F3DMC was implemented by using this 3D projector in a maximum likelihood expectation maximization (MLEM) iterative reconstruction. To assess the value of F3DMC, data were reconstructed using 4 methods: filtered backprojection (FBP), MLEM without attenuation correction (MLEM), MLEM with attenuation correction, Jaszczak scatter correction and 3D correction for depth-dependent spatial resolution using an analytical model (MLEMC) and F3DMC. Our results suggest that F3DMC improves mainly imaging sensitivity and signal-to-noise ratio (SNR): sensitivity is multiplied by about 10 3 and SNR is increased by 20 to 70% compared to MLEMC. Computation of a more robust projector and application of the method on more realistic datasets are currently under investigation.