Open-source code hosted online at programming portals is present in 99% of commercial software and is common practice among developers for rapid prototyping and cost-effective development. However, research reports the presence of vulnerabilities, which result in catastrophic security compromise, and the individual, organization, and even national secrecy are all victims of this circumstance. One of the frustrating aspects of vulnerabilities is that vulnerabilities manifest themselves in hidden ways that software developers are unaware of. One of the most critical tasks in ensuring software security is vulnerability detection, which jeopardizes core security concepts like integrity, authenticity, and availability. This study aims to explore security-related vulnerabilities in programming languages such as C, C++, and Java and present the disparities between them hosted at popular code repositories. To attain this purpose, 708 programs were examined by severity-based guidelines. A total of 1371 vulnerable codes were identified, of which 327 in C, 51 in C++, and 993 in Java. Statistical analysis also indicated a substantial difference between them, as there is ample evidence that the Kruskal-Wallis H-test p-value (.000) is below the 0.05 significance level. The Mann-Whitney Test mean rank for GitHub (Mean-rank=676.05) and Rosettacode (Mean-rank=608.64) are also different. The novelty of this article is to identify security vulnerabilities and grasp the nature severity of vulnerability in popular code repositories. This study eventually manifests a guideline for choosing a secure programming language as a successful testing technique that targets vulnerabilities more liable to breaching security.