The present work focuses on geometrically exact finite elements for highly slender beams. It aims at the proposal of novel formulations of Kirchhoff-Love type, a detailed review of existing formulations of Kirchhoff-Love and Simo-Reissner type as well as a careful evaluation and comparison of the proposed and existing formulations. Two different rotation interpolation schemes with strong or weak Kirchhoff constraint enforcement, respectively, as well as two different choices of nodal triad parametrizations in terms of rotation or tangent vectors are proposed. The combination of these schemes leads to four novel finite element variants, all of them based on a C 1 -continuous Hermite interpolation of the beam centerline. Essential requirements such as representability of general 3D, large-deformation, dynamic problems involving slender beams with arbitrary initial curvatures and anisotropic cross-section shapes, preservation of objectivity and path-independence, consistent convergence orders, avoidance of locking effects as well as conservation of energy and momentum by the employed spatial discretization schemes, but also a range of practically relevant secondary aspects will be investigated analytically and verified numerically for the different formulations. It will be shown that the geometrically exact Kirchhoff-Love beam elements proposed in this work are the first ones of this type that fulfill all these essential requirements. On the contrary, Simo-Reissner type formulations fulfilling these requirements can be found in the literature very well. However, it will be argued that the shear-free Kirchhoff-Love formulations can provide considerable numerical advantages such as lower spatial discretization error level, improved performance of time integration schemes as well as linear and nonlinear solvers or smooth geometry representation as compared to shear-deformable Simo-Reissner formulations when applied to highly slender beams. Concretely, several representative numerical test cases confirm that the proposed Kirchhoff-Love formulations exhibit a lower discretization error level as well as a considerably improved nonlinear solver performance in the range of high beam slenderness ratios as compared to two representative Simo-Reissner element formulations from the literature.