2007
DOI: 10.1002/sim.2921
|View full text |Cite
|
Sign up to set email alerts
|

A spatial structural equation modelling framework for health count responses

Abstract: A structural equation model is proposed for the impact on area health referral counts of spatially correlated latent constructs. One type of construct is indicator based and represents the underlying morbidity or health need; such constructs are derived in a normal errors measurement model involving a set of observed socio-economic indicators. Another set of residual constructs represents particularities of service configuration or spatially correlated risks that cannot be proxied by observed indicators. The s… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
3
0
2

Year Published

2009
2009
2014
2014

Publication Types

Select...
3
1

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(5 citation statements)
references
References 30 publications
0
3
0
2
Order By: Relevance
“…Liu et al [16] and Wang and Wall [17] generalize this application to the exponential family of distributions. Congdon et al [18] extended the generalized spatial structure equation models to incorporate spatially-structured and unstructured random effects at the measurement level.…”
Section: Introductionmentioning
confidence: 99%
“…Liu et al [16] and Wang and Wall [17] generalize this application to the exponential family of distributions. Congdon et al [18] extended the generalized spatial structure equation models to incorporate spatially-structured and unstructured random effects at the measurement level.…”
Section: Introductionmentioning
confidence: 99%
“…In cases where clear spatial causal relationships cannot be justified at all scales, it may be preferable to optimize the SE-SEM for a single lag distance as described in Description of the method: Fit and evaluate SEM models for each lag distance bin. The SE-SEM methodology outlined in this paper differs substantially from the alternative spatial SEM approaches available in the literature (Wang and Wall 2003, Liu et al 2005, Congdon et al 2007, Oud and Folmer 2008, Congdon 2010. Those methods have not achieved widespread usage in the natural sciences.…”
Section: Discussionmentioning
confidence: 99%
“…One common approach is to incorporate a distance measure as an observed or latent variable in a standard SEM model (Bailey and Krzanowski 2012). Other methods have largely been developed for health and sociometric data aggregated by administrative districts such as counties or city wards such as the modeling of spatially structured residuals accounting for relationships between adjacent districts (Congdon et al 2007, Oud and Folmer 2008, Congdon 2010. Also proposed are an extension of the common factor model to include neighborhood information (Wang and Wall 2003) and a hierarchical extension for simultaneous modeling of relationships between latent variables while accounting for spatial relationships (Liu et al 2005).…”
Section: Introductionmentioning
confidence: 99%
“…[6][7][8] Por esta razón se ha planteado en la literatura una serie de alternativas, incluidos el uso de la regresión binomial negativa, 9 los modelos de clase latente 5 o los modelos de ecuaciones estructurales. 10 En este último sentido, el objetivo de este trabajo es describir algunas de las alternativas estadísticas disponibles para el análisis de las variables de conteo y comparar los distintos modelos expuestos para evidenciar sus ventajas y desventajas, todo ello en el contexto general del uso de los servicios de salud.…”
unclassified
“…No obstante, hay tres que en particular vale la pena mencionar. Primero, y sin dejar de reconocer la complejidad vinculada con el uso de servicios de salud, se ha hecho uso de los modelos de ecuaciones estructurales,10,22,23 los cuales han mostrado cierta flexibilidad para modelar las relaciones de causalidad entre las variables relacionadas con el uso de servicios de salud. En segundo lugar aparecen los modelos de clase latente o mezclas finitas, los cuales se han aplicado también en el estudio del uso de servicios de salud 24,25.…”
unclassified