This paper expands the ideas of the spectral homotopy analysis method to apply them, for the first time, on non-linear partial differential equations. The spectral homotopy analysis method (SHAM) is a numerical version of the homotopy analysis method (HAM) which has only been previously used to solve non-linear ordinary differential equations. In this work, the modified version of the SHAM is used to solve a partial differential equation (PDE) that models the problem of unsteady boundary layer flow caused by an impulsively stretching plate. The robustness of the SHAM approach is demonstrated by its flexibility to allow linear operators that are partial derivatives with variable coefficients. This is seen to significantly improve the convergence and accuracy of the method. To validate accuracy of the the present SHAM results, the governing PDEs are also solved using a novel local linearisation technique coupled with an implicit finite difference approach. The two approaches are compared in terms of accuracy, speed of convergence and computational efficiency.