We investigate the steady two-dimensional flow of a viscous incompressible fluid in a rectangular domain that is bounded by two permeable surfaces. The governing fourth-order nonlinear differential equation is solved by applying the spectral-homotopy analysis method and a novel successive linearisation method. Semianalytical results are obtained and the convergence rate of the solution series was compared with numerical approximations and with earlier results where the homotopy analysis and homotopy perturbation methods were used. We show that both the spectral-homotopy analysis method and successive linearisation method are computationally efficient and accurate in finding solutions of nonlinear boundary value problems.
Abstract:In this study we use the spectral relaxation method (SRM) for the solution of the steady von Kármán flow of a Reiner-Rivlin fluid with Joule heating and viscous dissipation. The spectral relaxation method is a new Chebyshev spectral collocation based iteration method that is developed from the Gauss-Seidel idea of decoupling systems of equations. In this work, we investigate the applicability of the method in solving strongly nonlinear boundary value problems of von Kármán flow type. The SRM results are validated against previous results present in the literature and with those obtained using the bvp4c, a MATLAB inbuilt routine for solving boundary value problems. The study highlights the accuracy and efficiency of the proposed SRM method in solving highly nonlinear boundary layer type equations.
PACS
PurposeThe purpose of this paper is to study the steady laminar flow of a pressure driven third‐grade fluid with heat transfer in a horizontal channel. The study serves two purposes: to correct the inaccurate results presented in Siddiqui et al., where the homotopy perturbation method was used, and to demonstrate the computational efficiency and accuracy of the spectral‐homotopy analysis methods (SHAM and MSHAM) in solving problems that arise in fluid mechanics.Design/methodology/approachExact and approximate analytical series solutions of the non‐linear equations that govern the flow of a steady laminar flow of a third grade fluid through a horizontal channel are constructed using the homotopy analysis method and two new modifications of this method. These solutions are compared to the full numerical results. A new method for calculating the optimum value of the embedded auxiliary parameter ∼ is proposed.FindingsThe “standard” HAM and the two modifications of the HAM (the SHAM and the MSHAM) lead to faster convergence when compared to the homotopy perturbation method. The paper shows that when the same initial approximation is used, the HAM and the SHAM give identical results. Nonetheless, the advantage of the SHAM is that it eliminates the restriction of searching for solutions to the nonlinear equations in terms of prescribed solution forms that conform to the rule of solution expression and the rule of coefficient ergodicity. In addition, an alternative and more efficient implementation of the SHAM (referred to as the MSHAM) converges much faster, and for all parameter values.Research limitations/implicationsThe spectral modification of the homotopy analysis method is a new procedure that has been shown to work efficiently for fluid flow problems in bounded domains. It however remains to be generalized and verified for more complicated nonlinear problems.Originality/valueThe spectral‐HAM has already been proposed and implemented by the authors in a recent paper. This paper serves the purpose of verifying and demonstrating the utility of the new spectral modification of the HAM in solving problems that arise in fluid mechanics. The MSHAM is a further modification of the SHAM to speed up converge and to allow for convergence for a much wider range of system parameter values. The utility of these methods has not been tested and verified for systems of nonlinear equations. For this reason as much emphasis has been placed on proving the reliability and validity of the solution techniques as on the physics of the problem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.