1993
DOI: 10.2140/pjm.1993.158.15
|View full text |Cite
|
Sign up to set email alerts
|

A spectral theory for solvable Lie algebras of operators

Abstract: The main objective of this paper is to develop a notion of joint spectrum for complex solvable Lie algebras of operators acting on a Banach space, which generalizes Taylor joint spectrum (T.J.S.) for several commuting operators.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
69
0
1

Year Published

1996
1996
2022
2022

Publication Types

Select...
8

Relationship

0
8

Authors

Journals

citations
Cited by 18 publications
(70 citation statements)
references
References 6 publications
0
69
0
1
Order By: Relevance
“…Now we state the definition of the Taylor and the S lodkowski joint spectra; see [5], [7], [16], [20] and [21]. We follow the notation of [21, Definition 2.11.1].…”
Section: The Taylor the S Lodkowski And The Split Joint Spectramentioning
confidence: 99%
See 1 more Smart Citation
“…Now we state the definition of the Taylor and the S lodkowski joint spectra; see [5], [7], [16], [20] and [21]. We follow the notation of [21, Definition 2.11.1].…”
Section: The Taylor the S Lodkowski And The Split Joint Spectramentioning
confidence: 99%
“…Indeed, sincef ∈ σ δ,k,e (ρ | I) ⊆ σ δ,k (ρ | I),f is a character of I, i.e.,f (I 2 ) = 0. However, since I is an ideal of L, by the projection property of the joint spectrum σ δ,k (ρ) (see [5,Theorem 4.5], [20,Theorem 3.4] and [21, Satz 2.11.5]), there is f ∈ σ δ,k,e (ρ) such that f | I =f .…”
Section: The Fredholm Joint Spectramentioning
confidence: 99%
“…[8]- [12]) спектральной теории нильпотентных операторных алгебр Ли открывают возможности применения метода Тейлора к универсальной обертывающей алгебре B = U (g) конечномерной нильпотент-ной алгебры Ли g. В частности, можно дать определение спектра Тейлора σ(g, X) банахова U (g)-модуля X, обладающего свойством спектрального отоб-ражения по отношению к некоммутативным полиномам.…”
Section: § 1 введениеunclassified
“…and λ ∈ σ(id G ) (see [5], [6] and Theorem 3.6.7 of [15]). Here, of course, we denote by id G the natural inclusion map of the vector space G in B(X ), which can be viewed as a representation of G. …”
Section: Where (λ ⊗ λ)(T S) = λ(T ) + λ(S) For T S ∈ G Opmentioning
confidence: 99%