An exclusive advantage of semiconductor spintronics is its potential for optospintronics that will allow integration of spin-based information processing/storage with photon-based information transfer/communications. Unfortunately, progresses have so far been severely hampered by the failure to generate nearly fully spin-polarized charge carriers in semiconductors at room temperature. Here, we demonstrate successful generation of conduction electron spin polarization exceeding 90% at room temperature without a magnetic field in a non-magnetic all-semiconductor nanostructure, which remains high even up to 110°C. This is accomplished by remote spin filtering of InAs quantum-dot electrons via an adjacent tunneling-coupled GaNAs spin filter. We further show that the quantum-dot electron spin can be remotely manipulated by spin control in the adjacent spin filter, paving the way for remote spin encoding and writing of quantum memory as well as for remote spin control of spin-photon interfaces. This work demonstrates the feasibility to implement opto-spintronic functionality in common semiconductor nanostructures.