2023
DOI: 10.1108/k-12-2022-1676
|View full text |Cite
|
Sign up to set email alerts
|

A stacked ensemble learning method for customer lifetime value prediction

Abstract: PurposeWith the growth of organizations and businesses, customer acquisition and retention processes have become more complex in the long run. That is why customer lifetime value (CLV) has become crucial to sales managers. Predicting the CLV is a strategic weapon and competitive advantage in increasing profitability and identifying customers with more splendid profitability and is one of the essential key performance indicators (KPI) used in customer segmentation. Thus, this paper proposes a stacked ensemble l… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 35 publications
0
0
0
Order By: Relevance