PurposeWith the growth of organizations and businesses, customer acquisition and retention processes have become more complex in the long run. That is why customer lifetime value (CLV) has become crucial to sales managers. Predicting the CLV is a strategic weapon and competitive advantage in increasing profitability and identifying customers with more splendid profitability and is one of the essential key performance indicators (KPI) used in customer segmentation. Thus, this paper proposes a stacked ensemble learning method, a combination of multiple machine learning methods, for CLV prediction.Design/methodology/approachIn order to utilize customers’ behavioral features for predicting the value of each customer’s CLV, the data of a textile sales company was used as a case study. The proposed stacked ensemble learning method is compared with several popular predictive methods named deep neural networks, bagging support vector regression, light gradient boosting machine, random forest and extreme gradient boosting.FindingsEmpirical results indicate that the regression performance of the stacked ensemble learning method outperformed other methods in terms of normalized rooted mean squared error, normalized mean absolute error and coefficient of determination, at 0.248, 0.364 and 0.848, respectively. In addition, the prediction capability of the proposed method improved significantly after optimizing its hyperparameters.Originality/valueThis paper proposes a stacked ensemble learning method as a new method for accurate CLV prediction. The results and comparisons support the robustness and efficiency of the proposed method for CLV prediction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.