2021
DOI: 10.1016/j.eswa.2020.114195
|View full text |Cite
|
Sign up to set email alerts
|

A state-of-the-art review on mobile robotics tasks using artificial intelligence and visual data

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
35
0
4

Year Published

2021
2021
2024
2024

Publication Types

Select...
7
2

Relationship

3
6

Authors

Journals

citations
Cited by 107 publications
(39 citation statements)
references
References 112 publications
0
35
0
4
Order By: Relevance
“…Machine learning techniques have been used to solve a variety of problems in computer vision and robotics (Cebollada et al 2021). Gonzalez et al (2018) use machine learning to detect different levels of slippage for robotic missions in Mars; Dymczyk et al (2018) present the use of a boosted classifier to classify landmark observations and carry out the localization task in a more robust fashion.…”
Section: State Of the Artmentioning
confidence: 99%
“…Machine learning techniques have been used to solve a variety of problems in computer vision and robotics (Cebollada et al 2021). Gonzalez et al (2018) use machine learning to detect different levels of slippage for robotic missions in Mars; Dymczyk et al (2018) present the use of a boosted classifier to classify landmark observations and carry out the localization task in a more robust fashion.…”
Section: State Of the Artmentioning
confidence: 99%
“…En la literatura relacionada se pueden encontrar diversos trabajos que han abordado tareas en robótica y procesamiento de imágenes mediante técnicas de aprendizaje automático [4]. En cuanto al uso de las CNNs en el campo de la robótica móvil, son muchos los autores que han demostrado suéxito utilizando esta herramienta.…”
Section: Estado Del Arteunclassified
“…Therefore, with this kind of information, global features constitute an effective alternative, compared to local features, to many tasks, such as, for example, the reconstruction of complex indoor environments. In this regard, Sun et al [ 5 ] and Pintone et al [ 6 ] make use of deep learning approaches [ 7 , 8 , 9 ] to panoramic image analysis, with the objective of understanding the layout of indoor environments.…”
Section: Introductionmentioning
confidence: 99%