Fish can swim in a variety of states. For example, they look flexible and perform low-frequency undulatory locomotion when cruising, but they seem very powerful and stiff and perform high-frequency undulatory when hunting. In the process of changing the motion state, the stiffness of the fish body affects the swimming performance of the fish. In this article, we imitated the change of stiffness by superimposing rubber sheets and used experimental methods to test its swimming performance under different swing frequencies. A series of rubber fish tails were made according to the analysis of the swimming movement of real fish, providing different stiffness values and changing the curves of the body. In the prototype experiments, the base of the fish tail was fixed to a platform via a force sensor, which can oscillate at various speeds, so that the fish tail was able to swing and the thrust could be tested at different frequencies. According to the experimental results, we found that with the change of the swing frequency, there were different optimal stiffnesses that could make the thrust reach the maximum value, and with the increase of stiffness, the envelope interval of the swing curve gradually widened, the amplitude increased, and the hysteresis of the tail fin relative to the end decreased.