Escape and surveillance responses to predators are lateralized in several vertebrate species. However, little is known on the laterality of escapes and predator surveillance in arthropods. In this study, we investigated the lateralization of escape and surveillance responses in young instars and adults of Locusta migratoria during biomimetic interactions with a robot-predator inspired to the Guinea fowl, Numida meleagris. Results showed individual-level lateralization in the jumping escape of locusts exposed to the robot-predator attack. The laterality of this response was higher in L. migratoria adults over young instars. Furthermore, population-level lateralization of predator surveillance was found testing both L. migratoria adults and young instars; locusts used the right compound eye to oversee the robot-predator. Right-biased individuals were more stationary over left-biased ones during surveillance of the robot-predator. Individual-level lateralization could avoid predictability during the jumping escape. Population-level lateralization may improve coordination in the swarm during specific group tasks such as predator surveillance. To the best of our knowledge, this is the first report of lateralized predator-prey interactions in insects. Our findings outline the possibility of using biomimetic robots to study predator-prey interaction, avoiding the use of real predators, thus achieving standardized experimental conditions to investigate complex and flexible behaviours.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.