Global sensitivity has mainly been analyzed in static models, though most physical systems can be described by differential equations. Very few approaches have been proposed for the sensitivity of dynamic models and the only ones are local. Nevertheless, it would be of great interest to consider the entire uncertainty range of parameters since they can vary within large intervals depending on their meaning. Other advantage of global analysis is that the sensitivity indices of a given parameter are evaluated while all the other parameters can be varied. In this way, the relative variability of each parameter is taken into account, revealing any possible interactions. This paper presents the global sensitivity analysis for dynamic models with an original approach based on the polynomial chaos (PC) expansion of the output. The evaluation of the PC expansion of the output is less expensive compared to direct simulations. Moreover, at each time instant, the coefficients of the PC decomposition convey the parameter sensitivity and then a sensitivity function can be obtained. The PC coefficients are determined using non-intrusive methods. The proposed approach is illustrated with some well-known dynamic systems.