The propagation process of blasting vibration has always been a difficult problem affecting the stability of high slopes in open-pit mines. Taking the Jianshan Phosphorus Mine as the research background, combined with engineering geological investigation, field blasting test, blasting vibration monitoring, numerical simulation technology, and theoretical analysis, the three-dimensional dynamic stability of the adjacent high slope after blasting vibration was systematically studied. In our study, a small-diameter buffer shock-absorbing blasting technology near the slope was proposed, which greatly improved the production efficiency. Through regression analysis of a large amount of vibration test data, the law of blasting vibration propagation in Jianshan stope and Haifeng stope was obtained. In addition, by establishing four three-dimensional geomechanical numerical models, the slope’s own frequency, damping characteristics, and dynamic response acceleration distribution after detonation were studied, respectively. On the other hand, under the action of Ei Centro wave with 8-degree seismic intensity, the maximum total acceleration and maximum total displacement of the slope were calculated and analyzed. Both the explosion unloading of the 8-degree earthquake and the Ei Centro wave simulation results showed that the high slope near the Jianshan Phosphorus Mine was generally in a stable state. Thus, this study can provide technical support and theoretical guidance for mine blasting.