The definition of acute kidney injury (AKI), despite improvements in criteria, continues to be based on the level of serum creatinine and urinary output that do not specifically indicate tubular function or injury, or glomerular function or injury that is not significant enough to warrant acute hospitalization of the patient. Finding novel biomarkers of AKI has become a major focus nowadays in nephrology to overcome the further complications of end stage renal disease (ESRD). Many compounds, such as KIM 1, IL 18, NGAL, uromodulin, calprotectin, vanin 1, galactin 3, platelet-derived growth factor (PDGF), urinary Na+/H+ exchanger isoform 3 (NHE3), retinol binding protein (RBP) and Cystatin C, are released from the renal tubules and thus any alterations in tubular function can be detected by measuring these parameters in urine. Additionally, glomerular injury can be detected by measuring immunoglobulin G, nephrin, podocalyxin, podocin, transferrin, netrin-1, pyruvate kinase M2, etc. in urine. These novel biomarkers will be useful for timing the initial insult and assessing the duration of AKI. According to available research, these biomarkers could be applied to assess the onset of AKI, distinguishing between kidney injury and dysfunction, directing the management of AKI, and enhancing disease diagnosis. Therefore, we intend to present recent developments in our understanding of significant biomarkers implicated in various aspects of renal damage. Numerous biomarkers are implicated in various pathophysiological processes that follow renal injury, and can improve prognosis and risk classification.