Key Words porous films, pore size, low dielectric constant, positronium ■ Abstract Beam-based positron annihilation spectroscopy (PAS) is a powerful porosimetry technique with broad applicability in the characterization of nanoporous thin films, especially insulators. Pore sizes and distributions in the 0.3-30 nm range are nondestructively determined with only the implantation of low-energy positrons from a table-top beam. Depth-profiling with PAS has proven to be an ideal way to measure the interconnection length of pores, search for depth-dependent inhomogeneities or damage in the pore structure, and explore porosity hidden beneath dense layers or diffusion barriers. The capability of PAS is rapidly maturing as new intense positron beams around the globe spawn more accessible PAS facilities. After a short primer on the physics of positrons in insulators, the various probe techniques of PAS are briefly summarized, followed by a more detailed discussion of the wide range of nanoporous film parameters that PAS can characterize.
51and sensitivity to processing-induced changes. A unique strength associated with beam-based PAS is the capabilities to depth-profile by controlling the positron implantation energy and to resolve laterally by finely focusing the beam on a small spot on the target. The capability to nondestructively detect depth-dependent pore structural characteristics even when the pores are buried under barrier layers will be an increasingly attractive capability as nanoporous films and composites become more complex.