This study introduces an innovative all-in-one malware identification model that significantly enhances convenience and resource efficiency in classifying malware across diverse file types. Traditional malware identification methods involve the extraction of static and dynamic features, followed by comparisons with signature-based databases or machine learning-based classifiers. However, many malware detection applications that rely on transfer learning and image transformation suffer from excessive resource consumption. In recent years, transfer learning has emerged as a powerful tool for developing effective classifiers, leveraging pre-trained neural network models. In this research, we comprehensively explore various pre-trained network architectures, including compact and conventional networks, as well as series and directed acyclic graph configurations for malware classification. Our approach utilizes grayscale transform-based features as a standardized set of characteristics, streamlining malware classification across various file types. To ensure the robustness and generalization of our classification models, we integrate multiple datasets into the training process. Remarkably, we achieve an optimal model with 96% accuracy, while maintaining a modest 5 MB size using the SqueezeNet classifier. Overall, our model efficiently classifies malware across file types, reducing the computational load, which can be useful for cybersecurity professionals and organizations.