Abstract. In this work, we investigate the magnetic field fluctuations in three coronal mass ejection (CME)-driven sheath regions at 1 AU with their speeds ranging from slow to fast. The data set we use consists primarily of high resolution (0.092 s) magnetic field measurements from the Wind spacecraft. We analyse magnetic field fluctuation amplitudes and fluctuation amplitudes normalised to the mean magnetic field, compressibility, and spectral properties of fluctuations. We also analyse intermittency using various approaches: we apply the partial variance of increments (PVI) method, investigate probability distribution functions of fluctuations, including their skewness and kurtosis, and perform a structure function analysis. Our analysis is conducted separately for three different subregions in the sheath and in the solar wind ahead of it, each 1 hr in duration. We find that, for all cases, the transition from the solar wind ahead to the sheath generates new fluctuations and the intermittency and compressibility increase, while the region closest to the ejecta leading edge resembled the solar wind ahead. The spectral indices exhibit large variability in different parts of the sheath, but are typically steeper than Kolmogorov's in the inertial range. The structure function analysis produced generally much better fit with the extended p-model (Kraichnan's form) than with the standard version, implying that turbulence is not fully developed in CME sheaths near Earth's orbit. The p-values obtained (p~0.8–0.9) also suggest relatively high intermittency. At the smallest timescales investigated, the spectral indices indicate relatively shallow slopes (between −2 and −2.5), suggesting that in CME-driven sheaths at 1 AU the energy cascade from larger to smaller scales could still be ongoing through the ion scale. Regarding many properties (e.g., spectral indices and compressibility) turbulent properties in sheaths, regardless their speed, resemble that of the slow wind, rather fast wind. They are also partly similar to properties reported in terrestrial magnetosheath, in particular regarding their intermittency, compressibility and absence of Kolmogorov's type turbulence. Our study also reveals that turbulent properties can vary considerably within the sheath. This was in particular the case for the fast sheath behind the strong and quasi-parallel shock, including a small, coherent structure embedded close to its midpoint. Our results support the view of the complex formation of the sheath and different physical mechanisms playing a role in generating fluctuations in them.