Sensations generated by intense focused ultrasound (iFU) can occur cutaneously and/or at depth, in contrast to other forms of stimulation (heat, electricity) whose action usually occurs only at the skin surface or mechanical stimulation (von Frey hairs, calibrated forceps, tourniquets) that compress, hence stimulate all tissue. Previous work on iFU stimulation has led to the hypothesis that the tactile basis of iFU stimulation should correlate with the density of mechanoreceptors at the site of iFU stimulation. Here we tested that hypothesis, correlating a ‘two-point’ neurological exam, a standard measure of superficial mechanoreceptor density, with the intensity of superficially applied iFU necessary to generate sensations with high sensitivity and specificity. We applied iFU at 1.1 MHz for a 0.1 second to the fingertip pads of seventeen test subjects in a blinded fashion and escalating intensities until they consistently observed iFU-induced sensations. Most test subjects achieved high values of sensitivity and specificity, doing so at values of spatially and temporally averaged intensity measuring less than 100 W/cm^2. Moreover, the test subject’s sensitivity to iFU stimulation correlated with the density of mechanoreceptors as determined by a standard two-point discrimination neurological exam, consistent with earlier hypotheses.