The effect of spatial habitat structure and patchiness may differ among species within a multi-trophic system. Theoretical models predict that species at higher trophic levels are more negatively affected by fragmentation than are their hosts or preys. The absence or presence of the higher trophic level, in turn, can affect the population dynamics of lower levels and even the stability of the trophic system as a whole. The present study examines different effects of spatial habitat structure with two field experiments, using as model system the parasitoid Cotesia popularis which is a specialist larval parasitoid of the herbivore Tyria jacobaeae. One experiment examines the colonisation rate of the parasitoid and the percentage parasitism at distances occurring on a natural scale; the other experiment examines the dispersal rate and the percentage parasitism in relation to the density of the herbivore and its host plant. C. popularis was able to reach artificial host populations at distances up to the largest distance created (at least 80 m from the nearest source population). Also, the percentage parasitism did not differ among the distances. The density experiment showed that the total number of herbivores parasitised was higher in patches with a high density of hosts, regardless of the density of the host plant. The percentage parasitism, however, was not related to the density of the host. The density of the host plant did have a (marginally) significant effect on the percentage parasitism, probably indicating that the parasitoid uses the host plant of the herbivore as a cue to find the herbivore itself. In conclusion, the parasitoid was not affected by the spatial habitat structure on spatial scales that are typical of local patches.