The spreading process of drying and coalescing nanodispersion was simulated using the method of analogies. A mathematical description of the energy processes in the proposed physical model was obtained in the form of a system of differential equations of the first order. A transition function that describes the dynamics of the change in the contact angle when the nanodispersion drop spreads was obtained as a result of solving the system of differential equations. The physical meaning of the transition function coefficients was established. Based on the analysis of the ratio of the transition function coefficients, a theoretical justification for the results of experiments on choosing the optimal amount of desiccant introduced into styrene-acrylic nanodispersion was given.