A suitable tool for the design of intake and exhaust systems of internal combustion engines is provided by time-domain non-linear finite volume models. These models, however, are affected by overshoots at discontinuities and numerical dispersion unless some flux limiter is used. In this paper, the effect of the most relevant of such flux limiters on a nonlinear staggered-mesh finite-volume model is evaluated. Flux-Corrected-Transport (FCT) and Total Variation Diminishing (TVD) schemes, together with a Momentum Diffusion Term (MDT) are presented for such a model, and the performance of the resulting methods is checked in different problems representative of the influence of engine gas exchange flows on engine performance and intake and exhaust noise. First, two onedimensional cases are considered: the shock-tube problem, and the propagation of a finite amplitude pressure pulse. Secondly, a simple but representative three-dimensional geometry is studied. From the results obtained, it can be concluded that, even if none of the methods is able to handle properly the three problems considered, the FCT method provides the best overall performance.