This paper presents a numerical study analyzing the effect of pulsating flow in a variable geometry radial inflow turbine. The turbine behavior is analyzed under isentropic pulses, which are similar to those created by a rotating disk in a turbocharger test rig. Three different pulse frequencies (50, 90 and 130 Hz) and two pulse amplitudes (100 and 180 kPa) were considered. Turbine flow was studied throughout the pressure pulsation cycles in a wide range of off-design operating conditions, from low pressure ratio flow detachment to high pressure ratio choked flow. An overall analysis of the phasing of instantaneous mass flow and pressure ratio was first performed and the results show the non-quasi-steady behavior of the turbine as a whole as described in the literature. However, the analysis of the flow in the different turbine components independently gives a different picture. As the turbine volute has greater length and volume than the other components, it is the main source of non-quasi-steadiness of the turbine. The stator nozzles cause fewer accumulation effects than the volute, but present a small degree of hysteretic behavior due to flow separation and reattachment cycle around the vanes. Finally, the flow in the moving rotor behaves as quasi-steady, as far as flow capacity is concerned, although the momentum transfer between exhaust gas and blades (and thus work production and thermal efficiency) is Email address: galindo@mot.upv.es, pabfape@mot.upv.es, ronagar1@mot.upv.es, luiga12@mot.upv.es (J. Galindo, P. Fajardo ( * ) , R. Navarro and L.M. García-Cuevas) Preprint submitted to Applied Energy September 7, 2012 affected by a hysteretic cycle against pressure ratio, but not if blade speed ratio is considered instead. A simple model to simulate the turbine stator and rotor is proposed, based on the results obtained from the CFD computations.
ElsevierSerrano Cruz, JR.; Olmeda González, PC.; Tiseira Izaguirre, AO.; García-Cuevas González, LM.; Lefebvre, A. (2013) AbstractThe aim of the present work is to show an approximation, through an experimental an theoretical study, to quantify the mechanical losses in a turbocharging system. These are linked to the dynamics in the turbo shaft bearings, both axial and radial. Theoretical and experimental methodologies are presented in order to develop a mechanical losses model. The experimental work consists on a measurement campaign in quasi-adiabatic operating conditions, while in the theoretical part, a mathematical model is developed taking into account the radial and axial bearings. The model uses some assumptions in order to solve the Navier-Stokes equations, leading to a simplified model which includes viscosity and the Reynolds number of the oil film formed on the bearings. The proposed model has shown a good agreement with the experimental data.
The current investigation describes in detail a mass flow oriented model for extrapolation of reduced mass flow and adiabatic efficiency of double entry radial inflow turbines under any unequal and partial flow admission conditions. The model is based on a novel approach, which proposes assimilating double entry turbines to two variable geometry turbines (VGTs) using the mass flow ratio ( MFR ) between the two entries as the discriminating parameter. With such an innovative approach, the model can extrapolate performance parameters to non-measured MFR s, blade-to-jet speed ratios, and reduced speeds. Therefore, the model can be used in a quasi-steady method for predicting double entry turbines performance instantaneously. The model was validated against a dataset from two different double entry turbine types: a twin-entry symmetrical turbine and a dual-volute asymmetrical turbine. Both were tested under steady flow conditions. The proposed model showed accurate results and a coherent set of fitting parameters with physical meaning, as discussed in this paper. The obtained parameters showed very similar figures for the aforementioned turbine types, which allows concluding that they are an adequate set of values for initializing the fitting procedure of any type of double entry radial turbine.
Elsevier Galindo, J.; Tiseira Izaguirre, AO.; Fajardo, P.; García-Cuevas González, LM. (2014). Development and validation of a radial variable geometry turbine model for transient pulsating flow applications. Energy AbstractThis paper presents the development and validation of a one-dimensional radial turbine model able to be used in automotive turbocharger simulations. The model has been validated using results from a numerical 3D CFD simulation of stationary and pulsating flow in a variable geometry radial turbine. As the CFD analysis showed, the main non-quasi-steady behavior of the turbine is due to the volute geometry, so special care was taken in order to properly model it while maintaining low computational costs. The flow in the volute has been decomposed in its radial and azimuthal direction. The azimuthal flow corresponds to the flow moving along the volute, while the radial flow is computed by coupling its flow with a stator model. Although the stator caused fewer accumulation effects than the volute, a small accumulation model has been used for it, which also allows to compute the evolution of the flow inside the turbine with lower costs. The flow in the moving rotor can be considered quasi-steady, so a zero-dimensional model for the rotor has been developed. Several losses models where implemented for both the stator and the rotor. The results show good agreement with the CFD computations.
In compliance with oncoming emission directives, turbocharging and increasing complexity in the turbocharger system demands a great effort from researchers on the development of effective procedures and tools to cope with the new technological exigencies. This article describes a methodology for studying oil-coking influence in turbocharger performance. A preliminary evaluation and calibration is done. The aim of this work focuses on the development of methodologies and tools that help to evaluate and understand the consequences that degraded oils can generate in the bearing system during enhanced oil-coking procedure. Several experimental tests have been carried out in an engine test bench and using an independent lubrication system that only feeds the turbocharger. The test campaign is done under a specific engine cycle and using oil artificially contaminated at two different levels. The work is divided into two parts. The first part provides a description and definition of test conditions for measuring of the maximum temperature in the bearing system and the second part tackles the measurement and post-processing of the main instantaneous parameters defining the engine and turbocharger behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.