This paper proposes double interleaved boost converters with high voltage gain and with magnetically coupled inductors, while a third coupled winding is used for magnetic flux reset of the core during converter operation. The topology of the proposal is simple, it does not require many additional components compared to standard interleaved topologies, and it improves the transfer characteristics, as well as system efficiency even for high power levels. The investigation of steady-state operation was undertaken. It was discovered that the proposed converter can be designed for a target application where very high voltage gain is required, while adjustment of voltage gain value can be done through duty-cycle variation or by the turns-ratio modification between individual coils. The 1 kW prototype was designed to test the theoretical analysis. The results demonstrate that the proposed converter achieves very high voltage gain (1:8), while for the designed prototype the peak efficiency reaches >96% even when two additional diodes and one winding were implemented within the converter's main circuit. The dependency of the output voltage stiffness on load change is minimal. Thus, the presented converter might be a proper solution for applications where tight constant DC-bus voltage is required (a DC-DC converter for inverters).