The biggest obstacle to using a permanent magnet synchronous generator (PMSG) for a floating offshore wind turbine (FOWT) is the weight. A superconducting synchronous generator (SCSG) can be an alternative to this problem. In this paper, first, the weight and volume of a 10 MW class PMSG and SCSG for a large floating offshore wind farm (FOWF) were compared. Reflecting this, the economic feasibility of a 200 MW class FOWF based on a semi-submersible platform was compared and analyzed. The levelized cost of energy (LCOE) was used to compare the economics of the two types of FOWF, and the LCOE of the SCSG type FOWF was 6 (USD/MWh) more expensive than that of the PMSG type FOWF. However, if the superconducting wire price is reduced by 40% compared to the current price, the economic feasibility of the SCSG type FOWF can be secured. Considering only the weight, the SCSG type FOWF is far superior to the PMSG type FOWF. With the trend of falling superconducting wire prices and improving critical current, the SCSG type FOWF is expected to become a definite alternative to large-capacity wind farms, and the economic feasibility is expected within the next five years.