Highly polished 3, 4, and 5 mol% yttria-stabilized zirconia and CAD/CAM composite resin samples were prepared, and the influence of surface roughness (Ra and Sa, 21 areas/group), wettability (contact angle and surface energy, 3 samples/group), and surface chemical composition (2 samples/group) on single-strain bacterial adhesion models (Porphyromonas gingivalis, Streptococcus oralis, Streptococcus sanguinis, Streptococcus gordonii, and Streptococcus mutans) were compared via fluorescent staining with graphical analysis (21 areas/group). Statistical analysis was performed using the Shapiro-Wilk test followed by one-way analysis of variance with Tukey's test or the Kruskal-Wallis test with Dunn's test (α=0.05) and linear regression. For dental zirconia with the same surface roughness, the yttria content did not significantly influence the initial bacterial adhesion. However, higher bacterial adhesion was detected for the composite resin owing to its high C, O, and Si contents. There was no correlation between surface energy and bacterial adhesion for any bacterial strain (p<0.005).