Abstract. The Arctic region is known to be very sensitive to climate change. Clouds and in particular mixed-phase clouds (MPCs) remain one of the greatest sources of uncertainties in the modelling of the Arctic response to climate change due to an inaccurate representation of their variability and their quantification. In this study, we present a characterisation of the vertical, spatial and seasonal variability of Arctic clouds and MPCs over the entire Arctic region based on satellite active remote sensing observations. MPC properties in the region of the Svalbard archipelago (78 • N, 15 • E) are also investigated. The occurrence frequency of clouds and MPCs are determined from CALIPSO/CLOUDSAT measurements processed with the DARDAR retrieval algorithm, which allow for a reliable cloud thermodynamic phase classification (warm liquid, supercooled liquid, ice, mixing of ice and supercooled liquid). Significant differences are observed between MPC properties over the entire Arctic region and over the Svalbard region. Results show that MPCs are encountered all year long, with a minimum occurrence of 30 % in winter and 50 % during the rest of the year on average over the entire Arctic. Over the Svalbard region, MPC occurrence is more constant with time with larger values (55 %) compared to the average observed in the Arctic. MPCs are especially located at low altitudes, below 3000 m, where their frequency of occurrence reaches 90 %, particularly during winter, spring and autumn. Moreover, results highlight that MPCs are statistically more frequent above open sea than land or sea ice. The temporal and spatial distribution of MPCs over the Svalbard region seems to be linked to the supply of moister air and warmer water from the North Atlantic Ocean, which contribute to the initiation of the liquid water phase. Over the whole Arctic, and particularly in western regions, the increase of MPC occurrence from spring to autumn could be connected to the sea ice melting. During this period, the open water transports some of the warm water from the North Atlantic Ocean to the rest of the Arctic region. This facilitates the vertical transfer of moisture and thus the persistence of the liquid phase. Particular attention is also paid to the measurement uncertainties and how they could affect our conclusions.