2009
DOI: 10.1016/j.disc.2008.10.006
|View full text |Cite
|
Sign up to set email alerts
|

A substitution theorem for graceful trees and its applications

Abstract: a b s t r a c tA graceful labeling of a graph G = (V , E) assigns |V | distinct integers from the set {0, . . . , |E|} to the vertices of G so that the absolute values of their differences on the |E| edges of G constitute the set {1, . . . , |E|}. A graph is graceful if it admits a graceful labeling.The forty-year old Graceful Tree Conjecture, due to Ringel and Kotzig, states that every tree is graceful.We prove a Substitution Theorem for graceful trees, which enables the construction of a larger graceful tree… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
2
0
3

Year Published

2016
2016
2022
2022

Publication Types

Select...
3
1
1

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(5 citation statements)
references
References 8 publications
0
2
0
3
Order By: Relevance
“…У 2008 р. у [17] розширено деякі результати [16] введенням поняття граціозно сумісних дерев та доведенням так званої теореми підстановок.…”
Section: розширені гірляндова побудова -побудова та побудова приєднunclassified
See 2 more Smart Citations
“…У 2008 р. у [17] розширено деякі результати [16] введенням поняття граціозно сумісних дерев та доведенням так званої теореми підстановок.…”
Section: розширені гірляндова побудова -побудова та побудова приєднunclassified
“…Расширенные гирляндное построение, -построение и построение присоединением В 2008 г.в [17] расширены некоторые результаты [16] введением понятия грациозно совместимых деревьев и доказательством так называемой теоремы подстановок.…”
Section: построение присоединениемunclassified
See 1 more Smart Citation
“…A graph G is said to be a vertex amalgamation of G 1 and G 2 if it is obtained by identifying a vertex of G 1 with a vertex of G 2 . Vertex amalgamation is a widely used operation, which is the base of several of the techniques employed to build new graceful and/or α-graphs starting with two graphs that admit this type of labeling, see for example [2], [10], [13], and [19].…”
Section: Introductionmentioning
confidence: 99%
“…In Theorem 2.10 and Lemma 2.11, we saw that it is possible to expand a graceful tree by adding new leaves to the vertex with label 0 and also that, by identifying the 0-labelled vertices of two gracefully labelled trees, we obtain a graceful tree. In fact, many techniques were proposed aiming at generating new families of graceful trees through some kind of product or identification of two trees on specific vertices [67,68,84,108,116]. The following theorem presents one of the earliest techniques, proposed by Stanton and Zarnke [108].…”
Section: Early Results and Constructionsmentioning
confidence: 99%