We consider the following system of fractional differential equations
leftalign-star rightalign-oddD0+αxMathClass-open(tMathClass-close) + fMathClass-open(t,xMathClass-open(tMathClass-close),yMathClass-open(tMathClass-close)MathClass-close) = 0, align-even t ∈MathClass-open(0,1MathClass-close),n−1 < α ≤ n, rightalign-label align-label rightalign-oddD0+βyMathClass-open(tMathClass-close) + gMathClass-open(t,xMathClass-open(tMathClass-close),yMathClass-open(tMathClass-close)MathClass-close) = 0, align-even t ∈MathClass-open(0,1MathClass-close),n−1 < β ≤ n, rightalign-label align-label rightalign-oddxMathClass-open(iMathClass-close)MathClass-open(0MathClass-close) = yMathClass-open(iMathClass-close)MathClass-open(0MathClass-close) = 0, align-even i = 0,1,2,…,n−2, rightalign-label align-label rightalign-odd D0+γxMathClass-open(tMathClass-close)t=1 = 0, align-even 2 ≤ γ ≤ n−2, rightalign-label align-label rightalign-odd D0+δyMathClass-open(tMathClass-close)t=1 = 0, align-even 2 ≤ δ ≤ n−2, rightalign-label align-label where n MathClass-rel> 3MathClass-punc,D0MathClass-bin+α is the Riemann‐Liouville fractional derivative of order α,f,g : [0,1] × [0, ∞ ) × [0, ∞ ) → [0, ∞ ). Sufficient conditions are provided for the existence of positive solutions to the considered problem. Copyright © 2014 John Wiley & Sons, Ltd.