Decision tree induction is one of the most employed methods to extract knowledge from data, since the representation of knowledge is very intuitive and easily understandable by humans. The most successful strategy for inducing decision trees, the greedy top-down approach, has been continuously improved by researchers over the years.This work, following recent breakthroughs in the automatic design of machine learning algorithms, proposes a hyper-heuristic evolutionary algorithm for automatically generating decision-tree induction algorithms, named HEAD-DT. We perform extensive experiments in 20 public data sets to assess the performance of HEAD-DT, and we compare it to the traditional decision-tree algorithms C4.5 and CART. Results show that HEAD-DT can generate algorithms that significantly outperform C4.5 and CART regarding predictive accuracy and F-Measure.