ABSTRACT. Systems theories of robustness and resilience, which are derived from engineering and ecology, respectively, have been increasingly applied to social-ecological systems (SESs). Social-ecological robustness has been applied primarily to management of physical dimensions of SESs (e.g., water management) and resilience to management of ecological dimensions of SESs (e.g., rangelands). However, cases of highly engineered systems have yet to be adequately evaluated by either approach. We find the robustness framework serves to better explain management options of a highly engineered, ecologically-based SES, the lower Ship Creek fishery in Anchorage, Alaska, USA. Robustness applies well to this system because its dynamics are highly engineered through both structures and institutions. Even the salmon are products of a hatchery fishery that operates independently of many ecological variables and feedbacks within the system. However, robustness theory has yet to develop a prescriptive method for management that can assist practitioners. We conclude by applying Ostrom's design principles to the system dynamics to assess opportunities for increasing the robustness of this urban fishery.