The evaluation of small degree polynomials is critical for the computation of elementary functions. It has been extensively studied and is well documented. In this article, we evaluate existing methods for polynomial evaluation on superscalar architecture. In addition, we have completed this work with a factorization method, which is surprisingly neglected in the literature. This work focuses on out-of-order Intel processors, amongst others, of which computational units are available. Moreover, we applied our work on the elementary function e x that requires, in the current implementation, an evaluation of a polynomial of degree 10 for a satisfying precision and performance. Our results show that the factorization scheme is the fastest in benchmarks, and that latency and throughput are intrinsically dependent on each other on superscalar architecture.