The present paper proposes an iterative procedure based on chaos theory on dynamic risk definition to determine the best route for transporting hazardous materials (Hazmat). In the case of possible natural disasters, the safety of roads may be seriously affected. So the main objective of this paper is to simultaneously improve the travel time and risk to satisfy the local and national authorities in the transportation network. Based on the proposed procedure, four important risk components including accident information, population, environment, and infrastructure aspects have been presented under linguistic variables. Furthermore, the extent analysis method was utilized to convert them to crisp values. To apply the proposed procedure, a road network that consists of fifty nine nodes and eighty two-way edges with a pre-specified affected area has been considered. The results indicate that applying the dynamic risk is more appropriate than having a constant risk. The application of the proposed model indicates that, while chaotic variables depend on the initial conditions, the most frequent path will remain independent. The points that would help authorities to come to the better decision when they are dealing with Hazmat transportation route selection.