IEEE by sending a request to pubs-permissions@ieee.org.Abstract-The design of evolutionary algorithms has typically been focused on efficiently solving a single optimization problem at a time. Despite the implicit parallelism of population-based search, no attempt has yet been made to multitask, i.e., to solve multiple optimization problems simultaneously using a single population of evolving individuals. Accordingly, this paper introduces evolutionary multitasking as a new paradigm in the field of optimization and evolutionary computation. We first formalize the concept of evolutionary multitasking and then propose an algorithm to handle such problems. The methodology is inspired by bio-cultural models of multifactorial inheritance, which explain the transmission of complex developmental traits to offspring through the interactions of genetic and cultural factors. Furthermore, we develop a cross-domain optimization platform that allows one to solve diverse problems concurrently. The numerical experiments reveal several potential advantages of implicit genetic transfer in a multitasking environment. Most notably, we discover that the creation and transfer of refined genetic material can often lead to accelerated convergence for a variety of complex optimization functions.
We describe version 2 of RENCI PowerMon, a device that can be inserted between a computer power supply and the computer's main board to measure power usage at each of the DC power rails supplying the board. PowerMon 2 provides a capability to collect accurate, frequent, and time-correlated measurements. Since the measurements occur after the AC power supply, this approach eliminates power supply efficiency and time-domain filtering perturbations of the power measurements. PowerMon 2 provides detail about the power consumption of the hardware subsystems connected to each of its eight measurement channles. The device fits in an internal 3.5" hard disk drive bay, thus allowing it to be used in a 1U server chassis. It cost less than $150 per unit to fabricate our small quantity of prototypes.
In recent decades, the field of multiobjective optimization has attracted considerable interest among evolutionary computation researchers. One of the main features that makes evolutionary methods particularly appealing for multiobjective problems is the implicit parallelism offered by a population, which enables simultaneous convergence toward the entire Pareto front. While a plethora of related algorithms have been proposed till date, a common attribute among them is that they focus on efficiently solving only a single optimization problem at a time. Despite the known power of implicit parallelism, seldom has an attempt been made to multitask, i.e., to solve multiple optimization problems simultaneously. It is contended that the notion of evolutionary multitasking leads to the possibility of automated transfer of information across different optimization exercises that may share underlying similarities, thereby facilitating improved convergence characteristics. In particular, the potential for automated transfer is deemed invaluable from the standpoint of engineering design exercises where manual knowledge adaptation and reuse are routine. Accordingly, in this paper, we present a realization of the evolutionary multitasking paradigm within the domain of multiobjective optimization. The efficacy of the associated evolutionary algorithm is demonstrated on some benchmark test functions as well as on a real-world manufacturing process design problem from the composites industry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.