-Evolutionary multitasking has recently emerged as a novel paradigm that enables the similarities and/or latent complementarities (if present) between distinct optimization tasks to be exploited in an autonomous manner simply by solving them together with a unified solution representation scheme. An important matter underpinning future algorithmic advancements is to develop a better understanding of the driving force behind successful multitask problem-solving. In this regard, two (seemingly disparate) ideas have been put forward, namely, (a) implicit genetic transfer as the key ingredient facilitating the exchange of high-quality genetic material across tasks, and (b) population diversification resulting in effective global search of the unified search space encompassing all tasks. In this paper, we present some empirical results that provide a clearer picture of the relationship between the two aforementioned propositions. For the numerical experiments we make use of Sudoku puzzles as case studies, mainly because of their feature that outwardly unlike puzzle statements can often have nearly identical final solutions. The experiments reveal that while on many occasions "genetic transfer" and "population diversity" may be viewed as two sides of the same coin, the wider implication of genetic transfer, as shall be shown herein, captures the true essence of evolutionary multitasking to the fullest.