Abstract-Cooperative co-evolution has been introduced into evolutionary algorithms with the aim of solving increasingly complex optimization problems through a divide-and-conquer paradigm. In theory, the idea of co-adapted subcomponents is desirable for solving large-scale optimization problems. However, in practice, without prior knowledge about the problem, it is not clear how the problem should be decomposed. In this paper, we propose an automatic decomposition strategy called differential grouping that can uncover the underlying interaction structure of the decision variables and form subcomponents such that the interdependence between them is kept to a minimum. We show mathematically how such a decomposition strategy can be derived from a definition of partial separability. The empirical studies show that such near-optimal decomposition can greatly improve the solution quality on large-scale global optimization problems. Finally, we show how such an automated decomposition allows for a better approximation of the contribution of various subcomponents, leading to a more efficient assignment of the computational budget to various subcomponents.
Link to publication on Research at Birmingham portal General rights Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law. • Users may freely distribute the URL that is used to identify this publication. • Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research. • User may use extracts from the document in line with the concept of 'fair dealing' under the Copyright, Designs and Patents Act 1988 (?) • Users may not further distribute the material nor use it for the purposes of commercial gain. Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document. When citing, please reference the published version. Take down policy While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.
Abstract-The capacitated arc routing problem (CARP) has attracted much attention during the last few years due to its wide applications in real life. Since CARP is NP-hard and exact methods are only applicable to small instances, heuristic and metaheuristic methods are widely adopted when solving CARP. In this paper, we propose a memetic algorithm, namely memetic algorithm with extended neighborhood search (MAENS), for CARP. MAENS is distinct from existing approaches in the utilization of a novel local search operator, namely Merge-Split (MS). The MS operator is capable of searching using large step sizes, and thus has the potential to search the solution space more efficiently and is less likely to be trapped in local optima. Experimental results show that MAENS is superior to a number of state-of-the-art algorithms, and the advanced performance of MAENS is mainly due to the MS operator. The application of the MS operator is not limited to MAENS. It can be easily generalized to other approaches.Index Terms-Capacitated arc routing problem (CARP), evolutionary optimization, local search, memetic algorithm, metaheuristic search.
Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document. When citing, please reference the published version. Take down policy While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.
Genetic programming has been a powerful technique for automated design of production scheduling heuristics. Many studies have shown that heuristics evolved by genetic programming can outperform many existing heuristics manually designed in the literature. The flexibility of genetic programming also allows it to discover very sophisticated heuristics to deal with complex and dynamic production environments. However, as compared to other applications of genetic programming or scheduling applications of other evolutionary computation techniques, the configurations and requirements of genetic programming for production scheduling are more complicated. In this paper, a unified framework for automated design of production scheduling heuristics with genetic programming is developed. The goal of the framework is to provide the researchers with the overall picture of how genetic programming can be applied for this task and the key components. The framework is also used to facilitate our discussions and analyses of existing studies in the field. Finally, this paper shows how knowledge from machine learning and operations research can be employed and how the current challenges can be addressed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.